2 research outputs found

    Automated de novo metabolite identification with mass spectrometry and cheminformatics

    Get PDF
    In this thesis new algorithms and methods that enable the de novo identification of metabolites have been developed. The aim was to find methods to propose candidate structures for unknown metabolites using MSn data as starting point. These methods have been integrated into a semi-automated pipeline to identify new human metabolites. The discovery of new metabolites will improve our capability to understand disease via its metabolic fingerprint, to develop personalized treatments and to discover new drugs. In addition, the cheminformatics methods presented in this thesis increase our understanding on the properties of human metabolites. The research described in this thesis has shown that the success of de novo metabolite identification relies on the synergy between analytical chemistry methods (i.e. LC-MSn) and cheminformatics tools.Netherlands Organization for Applied Scientific Research (TNO) Netherlands Metabolomics CentreUBL - phd migration 201

    Understanding and classifying metabolite space and metabolite-likeness

    Get PDF
    While the entirety of 'Chemical Space' is huge (and assumed to contain between 10(63) and 10(200) 'small molecules'), distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as 'naturally occurring' products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA), hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen) content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a 'metabolite-likeness' score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more 'synthetic' and the other being more 'metabolite-like'. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite-likeness of candidate molecules during metabolite identification in the metabolomics field.Analytical BioScience
    corecore